Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications.

Author:

Froldi G1,Belardinelli L1

Affiliation:

1. Department of Medicine and Pharmacology, University of Florida, College of Medicine, Gainesville 32610.

Abstract

This study 1) compares the negative chronotropic and dromotropic actions of adenosine in guinea pig, rat, and rabbit hearts; 2) investigates the mechanism(s) for the different responses; and 3) determines the physiological implications. Isolated perfused hearts were instrumented for measurement of atrial rate and atrioventricular (AV) nodal conduction time. Differences in metabolism of adenosine were determined in the absence and presence of dipyridamole (nucleoside uptake blocker) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, adenosine deaminase inhibitor). Dipyridamole plus EHNA decreased adenosine's EC50 for the negative dromotropic effect by 14-fold in guinea pig heart and 1.6-fold in rat heart. This is consistent with the greater number of [3H]nitrobenzylthioinosine binding sites measured in membranes from guinea pig (1,231 +/- 68 fmol/mg protein) compared with rat (302 +/- 31 fmol/mg protein) and rabbit (260 +/- 28 fmol/mg protein) atria. The potency of adenosine to slow atrial rate and prolong AV nodal conduction time was greater in guinea pig than in rat or rabbit hearts. This rank order of potency correlated well with the number of binding sites for the specific adenosine receptor radioligand 125I-aminobenzyladenosine in guinea pig (102 +/- 13 fmol/mg protein), rat (11 +/- 0.5 fmol/mg protein), and rabbit (8 +/- 1 fmol/mg protein) atrial membranes. Hypoxia increased the rate of adenosine release by severalfold and caused slowing of heart rate and AV block. In spontaneously beating hearts, the main effect of hypoxia was a slowing of ventricular rate, which in the guinea pig heart was due to AV block and in the rat heart to atrial slowing. In atrial paced hearts, hypoxia caused a marked prolongation of AV nodal conduction time in guinea pig (39 +/- 4 msec) and rabbit (29 +/- 5 msec) hearts, but only small effect in rat hearts (10 +/- 2 msec). The differences in response to hypoxia could be accounted for by the species-dependent differences in the 1) amount of adenosine released and metabolized, 2) sensitivity of the hearts to adenosine, and 3) dependency of AV nodal conduction on atrial rate. The findings indicate that the results from physiological or pharmacological studies on adenosine in one species may not be applicable to others, and the ultimate effect of adenosine and hypoxia is to slow ventricular rate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3