Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients.

Author:

Hohl C M1,Li Q A1

Affiliation:

1. Department of Medical Biochemistry, Ohio State University, Columbus 43210.

Abstract

Isolated adult canine ventricular myocytes were used to study the role of compartmentation of cAMP in the diverse functional responses to various drugs that elevate cAMP. Myocytes presented with the beta-agonist isoproterenol accumulated cAMP with a half maximally effective concentration (EC50) of 3.55 x 10(-8) M. Approximately 45% of the total cAMP was recovered in the particulate fraction of digitonin-lysed myocytes under these conditions. With phosphodiesterase inhibition (10 microM isobutylmethylxanthine), isoproterenol-stimulated cAMP production was up to 3.4-fold greater, but the proportion of total cAMP residing in the particulate fraction declined to less than 20%. Similar results were obtained with forskolin, a direct activator of adenylate cyclase. Treatment with isoproterenol shortened the duration at 50% maximum peak height (T 1/2) and increased the peak fluorescence ratio of electrically triggered single-cell free Ca2+ transients in fura-2-loaded canine myocytes. Isoproterenol dose-response curves gave EC50 values of 1.7 x 10(-9) and 4.4 x 10(-9) M for effects on T 1/2 and peak height, respectively. Alterations in peak height and T 1/2 of Ca2+ transients also showed a dose dependency on isobutylmethylxanthine and forskolin. Comparison of myocyte cAMP content with the corresponding changes in free Ca2+ transients demonstrated a close correlation between particulate cAMP and the extent of shortening or increase in peak height of the fura-2 Ca2+ transients (r = 0.92 for each). However, when these two parameters were plotted as a function of total cAMP, the resulting curves were nonlinear and divergent for each agent tested. The results support the hypothesis that differences in responses to agents that augment cAMP can be explained in part by compartmentation of cAMP. Furthermore, Ca2+ mobilization seems to be most affected by cAMP located in the particulate compartment of canine cardiac myocytes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3