Monocyte/Macrophage Regulation of Vascular Calcification In Vitro

Author:

Tintut Yin1,Patel Jignesh1,Territo Mary1,Saini Trishal1,Parhami Farhad1,Demer Linda L.1

Affiliation:

1. From the Departments of Medicine (Y.T., J.P., M.T., T.S., F.P., L.L.D.) and Physiology (L.L.D.), UCLA School of Medicine, Los Angeles, Calif.

Abstract

Background Calcification is a common complication of atherosclerosis and other chronic inflammatory processes that involves infiltration of monocytes and accumulation of macrophages. Methods and Results To determine whether these cells modulate vascular calcification in vitro, calcifying vascular cells (CVCs), a subpopulation of osteoblast-like cells derived from the artery wall, were cocultured with human peripheral blood monocytes for 5 days. Results showed that alkaline phosphatase (ALP) activity, a marker of osteoblastic differentiation, was significantly greater in cocultures than in cultures of CVCs or monocytes alone. Both ALP activity and matrix mineralization increased in proportion to the number of monocytes added. Activation of monocyte/macrophages (M/Ms) by oxidized LDL further increased ALP activity in cocultures. However, neither conditioned medium from oxidized-LDL–activated M/Ms or transwell coculture had this effect on CVCs, which suggests a need for cell-to-cell contact. In contrast, conditioned medium from lipopolysaccharide-activated M/Ms increased ALP activity of CVCs. ELISA showed that lipopolysaccharide-activated M/Ms secreted tumor necrosis factor-α, and neutralizing antibody to tumor necrosis factor-α attenuated the induction of ALP activity by the conditioned media. Conclusions These results suggest that M/Ms enhance in vitro vascular calcification via 2 independent mechanisms: cell-cell interaction and production of soluble factors such as tumor necrosis factor-α.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3