Influence of Deformability of Human Red Cells upon Blood Viscosity

Author:

SCHMID-SCHöNBEIN HOLGER1,WELLS ROE1,GOLDSTONE JERRY1

Affiliation:

1. Departments of Medicine, Harvard Medical School and Peter Bent Brigham Hospital Boston, Massachusetts 02115

Abstract

The viscosity of blood at high rates of shear is unusually low compared to other suspensions of similar concentration. The underlying mechanisms were studied by rotational viscometry, red cell filtration, viscometry of packed cells and direct microscopic observation of red cells under flow in a transparent cone plate viscometer. Deformability of red cells was altered osmotically or abolished by aldehyde fixation. The normal red cells under isosmotic conditions passed easily through filter pores (5 to 14 µ diameter). After osmotic crenation, deformability of cells in pore flow was reduced. Normal cells were deformed into a variety of shapes at high rates of shear, while crenated cells tumbled undeformed. Suspensions of these normal cells showed more pronounced shear thinning (reduction of viscosity with increasing shear rate) than suspensions of crenated cells. Suspensions of rigid cells showed greatly increased viscosity and a shear thickening as a function of shear rate and shear time. The physiological deformability is of critical importance to blood flow at high rates of shear. This is possible through a fluid transition of the erythrocyte caused by a rotation of the membrane with and around the cell contents. This phenomenon is the prime cause of the progressive reduction in viscosity with increasing shear.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3