Factors limiting regeneration of ATP following temporary ischemia in cat brain.

Author:

Welsh F A,O'Connor M J,Marcy V R,Spatacco A J,Johns R L

Abstract

Cerebral ischemia was induced in cats using bilateral carotid artery occlusion coupled with hemorrhagic hypotension. Thirty minutes of ischemia, which depleted levels of ATP and phosphocreatine throughout the cerebral cortex, was followed by 2-4 hours of recirculation. During the recovery period, cortical perfusion and NADH fluorescence were monitored through a cranial window. Postischemic perfusion, as indicated by transit time, was initially higher than control, but declined to subnormal levels by 60 minutes. NADH fluorescence transients, induced by brief anoxia, also decreased steadily during recirculation, indicating a failure of oxidation-reduction capability. The disappearance of anoxic-NADH transients usually preceded the decline of flow, suggesting that O2 delivery was not the factor limiting redox reactions. Furthermore, tissue levels of NADH, which were nearly normal after 2-4 hours of recirculation, did not indicate tissue hypoxia. In spite of normalization of NADH, resynthesis of high energy phosphates were severely impaired. The degree of ATP recovery varied widely in different cortical regions; however, there were two general groups of ATP values--one at 5% and the other at 70% of control levels. In the energy-depleted areas, NADH levels were normal, but the total pool of NAD (NADH + NAD+) and the tissue content of K+ were 43% lower than control. In contrast, the NAD pool and K+ content were only slightly diminished in the regions with greater ATP restitution. The results suggest that postischemic resynthesis of ATP may be limited not by inadequate delivery of O2, but rather by defective production of NADH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference39 articles.

1. Diffuse cerebral ischemia in the cat: II. Regional metabolites during severe ischemia and recirculation

2. Effects of phenobarbital in cerebral ischemia. Part II: restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after pronounced incomplete ischemia.

3. O'Connor MJ Welsh FA Marcy VR: The effects of bilateral carotid occlusion and systemic hypotension in the cat. III. Regional metabolism and flow during recovery. Submitted to Stroke March 1981

4. Cerebral ischemia. II. The no-reflow phenomenon;Ames A III;Amer J Pathol,1968

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiparametric Responses of the Gerbil Brain to Oxygen Supply;The Mongolian Gerbil Brain;2024

2. Brain organoids for hypoxic-ischemic studies: from bench to bedside;Cellular and Molecular Life Sciences;2023-10-07

3. Animal models of stroke;Animal Models and Experimental Medicine;2021-09

4. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges;Frontiers in Cellular Neuroscience;2017-05-08

5. Monitoring of Various Organs in Different Animal Models;Mitochondrial Function In Vivo Evaluated by NADH Fluorescence;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3