Post-ischemic hypermetabolism in cat brain.

Author:

Nemoto E M,Hossmann K A,Cooper H K

Abstract

Delayed postischemic brain hypoperfusion and hypermetabolism are likely detrimental factors to neurologic recovery after transient global brain ischemia and may be mediated by catecholamines acting via adrenergic receptors. We evaluated the effects of alpha and beta receptor blockade on cerebral blood flow (CBF) and metabolism after 16 min transient global brain ischemia. Ischemia was induced by arterial hypotension and a high pressure neck tourniquet in 13 anesthetized cats. Six cats were untreated, 4 received propranolol 1 mg/kg, IV and 3 a combination of propranolol and phentolamine, one mg/kg injected one min before recirculation. Total CBF was measured by continuous monitoring of cerebral venous 133Xe clearance after bolus intra-arterial injection. Arterial and cerebral venous oxygen, glucose and lactate were measured. Cerebral cortex glucose and lactate were measured 3 hours post-ischemia after in situ freezing with liquid N2. The cerebral cortex of 3 cats anesthetized, but not subjected to ischemia, was similarly frozen and analyzed for glucose and lactate. Total CBF was relatively constant for up to 3 h post-ischemia in all groups, but significant changes in fast and slow-flow rates and compartment sizes were observed. In untreated cats, the normal 60/40 percent relative weight of the fast and slow-flow compartments was reversed to 30/70 percent by 1 hr post-ischemia. Propranolol attenuated the size of the fast-flow compartment in the first 30 min post-ischemia which was partially restored by phentolamine. Brain oxygen consumption increased 2 to 3-fold by 1 h post-ischemia in all groups. Propranolol compromised CBF and impaired glucose and lactate oxidation which was partly reversed by phentolamine. We concluded that within the first 30 min post-ischemia, beta, and to a lesser extent, alpha receptors predominate in the modulation of cerebrovascular tone. By 1 h post-ischemia, however, adrenergic modulation of cerebrovascular tone is lost. Delayed post-ischemic hypermetabolism unlike stress-induced, but like hypoxia-induced hypermetabolism is only partially affected by beta blockade. Propranolol apparently compromises brain oxygen consumption secondary to a reduction in brain O2 supply while phentolamine improves perfusion and oxygen consumption.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference61 articles.

1. Experimental catecholamine-induced chronic cerebral vasospasm

2. Cerebral ischemia. II. The no-reflow phenomenon;Ames A III;Am J Pathol,1968

3. Evidence for regional differences in the effect of beta-adrenergic stimulation on cerebral blood flow

4. Baum T: Fundamental principles governing the regulation of circulatory function. In Michael J. Antonaccio (ed) Cardiovascular Pharmacology New York Raven Press 1977 p 9

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3