Small Heat-Shock Protein Hsp20 Attenuates β-Agonist–Mediated Cardiac Remodeling Through Apoptosis Signal–Regulating Kinase 1

Author:

Fan Guo-Chang1,Yuan Qunying1,Song Guojie1,Wang Yigang1,Chen Guoli1,Qian Jiang1,Zhou Xiaoyang1,Lee Yong J.1,Ashraf Muhammad1,Kranias Evangelia G.1

Affiliation:

1. From the Departments of Pharmacology and Cell Biophysics (G.-C.F., Q.Y., G.C., J.Q., X.Z., E.G.K.) and Pathology and Laboratory Medicine (Y.W., MA.), University of Cincinnati College of Medicine, Ohio; Department of Cardiology (G.S.), 2nd Clinical School of Yangzhou University Medical College, China; Department of Surgery and Pharmacology (Y.J.L.), University of Pittsburgh, Pa; and Molecular Biology Division (E.G.K.), Center for Basic Research, Foundation for Biomedical Research of the Academy of...

Abstract

Chronic stimulation of the β-adrenergic neurohormonal axis contributes to the progression of heart failure and mortality in animal models and human patients. In cardiomyocytes, activation of the β-adrenergic pathway has been shown to result in transiently increased expression of a cardiac small heat-shock protein Hsp20. The present study shows that cardiac overexpression (10-fold) of Hsp20 may protect the heart against β-agonist–induced cardiac remodeling, associated with isoproterenol (50 μg/g per day) infusion for 14 days. Hsp20 attenuated the cardiac hypertrophic response, markedly reduced interstitial fibrosis, and decreased apoptosis. Contractility was also preserved in hearts with increased Hsp20 levels. These beneficial effects were associated with attenuation of the ASK1-JNK/p38 (apoptosis signal–regulating kinase 1/c-Jun NH 2 -terminal kinase/p38) signaling cascade triggered by isoproterenol, whereas there was no difference in either extracellular signal-related kinase 1/2 or Akt activation. Parallel in vitro experiments supported the inhibitory role of Hsp20 on enforced ASK1-JNK/p38 activation in both H9c2 cells and adult rat cardiomyocytes. Immunostaining studies also demonstrated that Hsp20 colocalizes with ASK1 in cardiomyocytes. Taken together, our findings indicate that (1) β-agonist–induced cardiac injury is associated with activation of the ASK1-JNK/p38 cascade; (2) increased expression of Hsp20 attenuates the induction of remodeling, dysfunction, and apoptosis in response to sustained β-adrenergic stimulation; and (3) the beneficial effects of Hsp20 are at least partially attributable to inhibition of the ASK1-signaling cascade.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3