Paired-Related Homeobox Gene Prx1 Is Required for Pulmonary Vascular Development

Author:

Ihida-Stansbury Kaori1,McKean David M.1,Gebb Sarah A.1,Martin James F.1,Stevens Troy1,Nemenoff Raphael1,Akeson Ann1,Vaughn Jessica1,Jones Peter Lloyd1

Affiliation:

1. From Department of Pediatrics (K.I.-S., D.M.M., J.V., P.L.J.) and Department of Medicine (S.A.G., R.N.), University of Colorado Health Sciences Center, Denver, Co; Institute of Biosciences and Technology (J.F.M.), Texas A&M University, Houston, Tex; Center for Lung Biology (T.S.), University of South Alabama, Mobile, Ala; and Cincinnati Children’s Hospital Medical Center (A.A.), Cincinnati, Ohio.

Abstract

Herein, we show that the paired-related homeobox gene, Prx1 , is required for lung vascularization. Initial studies revealed that Prx1 localizes to differentiating endothelial cells (ECs) within the fetal lung mesenchyme, and later within ECs forming vascular networks. To begin to determine whether Prx1 promotes EC differentiation, fetal lung mesodermal cells were transfected with full-length Prx1 cDNA, resulting in their morphological transformation to an endothelial-like phenotype. In addition, Prx1-transformed cells acquired the ability to form vascular networks on Matrigel. Thus, Prx1 might function by promoting pulmonary EC differentiation within the fetal lung mesoderm, as well as their subsequent incorporation into vascular networks. To understand how Prx1 participates in network formation, we focused on tenascin-C (TN-C), an extracellular matrix (ECM) protein induced by Prx1. Immunocytochemistry/histochemistry showed that a TN-C–rich ECM surrounds Prx1-positive pulmonary vascular networks both in vivo and in tissue culture. Furthermore, antibody-blocking studies showed that TN-C is required for Prx1-dependent vascular network formation on Matrigel. Finally, to determine whether these results were relevant in vivo, we examined newborn Prx1 –wild-type (+/+) and Prx1 -null (−/−) mice and showed that Prx1 is critical for expression of TN-C and lung vascularization. These studies provide a framework to understand how Prx1 controls EC differentiation and their subsequent incorporation into functional pulmonary vascular networks.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3