Emergence of a R-Type Ca 2+ Channel (Ca V 2.3) Contributes to Cerebral Artery Constriction After Subarachnoid Hemorrhage

Author:

Ishiguro Masanori1,Wellman Theresa L.1,Honda Akira1,Russell Sheila R.1,Tranmer Bruce I.1,Wellman George C.1

Affiliation:

1. From the Department of Pharmacology (M.I., T.L.W., A.H., G.C.W.), University of Vermont College of Medicine, Burlington, Vt; Department of Neurosurgery (M.I.), Sapporo Medical University, Sapporo, Japan; and the Department of Surgery (S.R.R., B.L.T., G.C.W.), Division of Neurological Surgery, University of Vermont College of Medicine, Burlington, Vt.

Abstract

Cerebral aneurysm rupture and subarachnoid hemorrhage (SAH) inflict disability and death on thousands of individuals each year. In addition to vasospasm in large diameter arteries, enhanced constriction of resistance arteries within the cerebral vasculature may contribute to decreased cerebral blood flow and the development of delayed neurological deficits after SAH. In this study, we provide novel evidence that SAH leads to enhanced Ca 2+ entry in myocytes of small diameter cerebral arteries through the emergence of R-type voltage-dependent Ca 2+ channels (VDCCs) encoded by the gene Ca V 2.3. Using in vitro diameter measurements and patch clamp electrophysiology, we have found that L-type VDCC antagonists abolish cerebral artery constriction and block VDCC currents in cerebral artery myocytes from healthy animals. However, 5 days after the intracisternal injection of blood into rabbits to mimic SAH, cerebral artery constriction and VDCC currents were enhanced and partially resistant to L-type VDCC blockers. Further, SNX-482, a blocker of R-type Ca 2+ channels, reduced constriction and membrane currents in cerebral arteries from SAH animals, but was without effect on cerebral arteries of healthy animals. Consistent with our biophysical and functional data, cerebral arteries from healthy animals were found to express only L-type VDCCs (Ca V 1.2), whereas after SAH, cerebral arteries were found to express both Ca V 1.2 and Ca V 2.3. We propose that R-type VDCCs may contribute to enhanced cerebral artery constriction after SAH and may represent a novel therapeutic target in the treatment of neurological deficits after SAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3