Persistent Stunning Induces Myocardial Hibernation and Protection

Author:

Kim Song-Jung1,Peppas Athanasios1,Hong Suk-Keun1,Yang Guiping1,Huang Yanhong1,Diaz Gissela1,Sadoshima Junichi1,Vatner Dorothy E.1,Vatner Stephen F.1

Affiliation:

1. From the Cardiovascular Research Institute, Departments of Cell Biology and Molecular Medicine, and Department of Medicine, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, NJ.

Abstract

To test the hypothesis that persistent myocardial stunning can lead to hibernating myocardium, 13 pigs were chronically instrumented, and persistent stunning was induced regionally by 6 repetitive episodes of 90-minute coronary stenosis (CS) (30% reduction in baseline coronary blood flow [CBF]) followed by full reperfusion every 12 hours. During the 1st CS, CBF fell from 43±2 to 31±2 mL/min, and anterior wall thickening (AWT) fell by 54±8%, but posterior WT did not change. AWT never recovered fully and remained depressed by 31±7% before the 6th CS, reflecting persistent myocardial stunning, but baseline CBF was not changed. Surprisingly, during the 6th CS, AWT did not fall further despite a similar reduction in CBF during CS, as occurred with the 1st episode. Regional MV̇ o 2 fell similarly during the 1st and 6th CS. During the 1st CS, plasma glucose uptake increased, whereas free fatty acid (FFA) uptake was reduced. Before the 6th CS, glucose uptake remained elevated, whereas FFA uptake remained reduced. Histology revealed enhanced glycogen deposition, which could be explained by decreased glycogen synthase kinase (GSK)-3β protein levels and activity. These results indicate that persistent stunning, even in the absence of chronic ischemia, can recapitulate the phenotype of myocardial hibernation. This results in a shift in the flow/function relationship where a 30% decrease in CBF is no longer accompanied by a fall in myocardial function, which could be explained, in part, by a shift in substrate utilization. These hemodynamic/metabolic adjustments could facilitate survival of hibernating myocardium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3