Activation of Histone Deacetylase 2 by Inducible Heat Shock Protein 70 in Cardiac Hypertrophy

Author:

Kee Hae Jin1,Eom Gwang Hyeon1,Joung Hosouk1,Shin Sera1,Kim Ju-Ryoung1,Cho Young Kuk1,Choe Nakwon1,Sim Bo-Woong1,Jo Daewoong1,Jeong Myung Ho1,Kim Kyung Keun1,Seo Jeong-Sun1,Kook Hyun1

Affiliation:

1. From the Departments of Pharmacology (H.J.K., G.H.E., H.J., S.S., J.-R.K., N.C., K.K.K., H.K.), Biomedical Science (D.J.) and Medical Research Center for Gene Regulation (H.J.K., G.H.E., H.J., J.-R.K., K.K.K., H.K.), Chonnam National University Medical School, Gwangju; Department of Pediatrics (Y.K.C.), Heart Center (M.H.J.), Chonnam National University Hospital, Gwangju, South Korea; Macrogen Inc (B.-W.S., J.-S.S.) and Department of Biochemistry and Molecular Biology (J.-S.S.), Seoul National...

Abstract

Diverse cardiac diseases induce cardiac hypertrophy, which leads to dilatation and heart failure. We previously reported that hypertrophy can be blocked by class I histone deacetylase (HDAC) inhibitor, which prompted us to investigate the regulatory mechanism of class I HDACs. Cardiac hypertrophy was introduced by aortic banding, by infusion of isoproterenol or angiotensin II, or by swimming. Hypertrophic stimuli transiently elevated the activity of histone deacetylase-2 (Hdac2), a class I HDAC. In cardiomyocytes, forced expression of Hdac2 simulated hypertrophy in an Akt-dependent manner, whereas enzymatically inert Hdac2 H141A failed to do so. Hypertrophic stimuli induced the expression of heat shock protein (Hsp)70. The induced Hsp70 physically associated with and activated Hdac2. Hsp70 overexpression produced a hypertrophic phenotype, which was blocked either by siHdac2 or by a dominant negative Hsp70ΔABD. In Hsp70.1 −/− mice, cardiac hypertrophy and Hdac2 activation were significantly blunted. Heat shock either to cardiomyocytes or to mice activated Hdac2 and induced hypertrophy. However, heat shock-induced Hdac2 activation was blunted in the cardiomyocytes isolated from Hsp70.1 −/− mice. These results suggest that the induction of Hsp70 in response to diverse hypertrophic stresses and the ensuing activation of HDAC2 trigger cardiac hypertrophy, emphasizing HSP70/HDAC2 as a novel mechanism regulating hypertrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3