Immune Cell Toll-Like Receptor 4 Is Required for Cardiac Myocyte Impairment During Endotoxemia

Author:

Tavener Samantha A.1,Long Elizabeth M.1,Robbins Stephen M.1,McRae Krista M.1,Van Remmen Holly1,Kubes Paul1

Affiliation:

1. From the Immunology Research Group, Department of Physiology and Biophysics (S.A.T., K.M.M., P.K.), Departments of Oncology and Biochemistry and Molecular Biology (E.M.L., S.M.R.), University of Calgary Medical Centre, Calgary, Alberta, Canada; Departments of Cellular and Structural Biology (H.V.R.), University of Texas Health Science Center, San Antonio.

Abstract

The aim of this study was to investigate the importance of Toll-like receptor 4 (TLR4) signaling on cardiac myocytes versus immune cells in lipopolysaccharide (LPS)-induced cardiac dysfunction. Cardiac myocytes isolated from LPS-treated C57Bl/6 mice showed reduced shortening and calcium transients as compared with myocytes from untreated mice. In addition, LPS-treated C57Bl/6 mice showed impaired cardiac mitochondrial function, including reduced respiration and reduced time of induction of permeability transition. All of the aforementioned cardiac dysfunction was dependent on TLR4, because LPS-treated TLR4-deficient mice did not have reduced myocyte shortening or mitochondrial dysfunction. To evaluate the role of cardiac myocyte versus leukocyte TLR4, LPS was injected into chimeric mice with TLR4-positive leukocytes and TLR4-deficient myocytes. These mice showed reduced myocyte shortening in response to LPS. Myocytes from chimeric mice with TLR4-deficient leukocytes and TLR4-positive myocytes had no response to LPS. In addition, isolated myocytes from C57Bl/6 mice subsequently treated with LPS and serum for various times did not have reduced shortening, despite the presence of TLR4 mRNA and protein, as determined by reverse-transcription polymerase chain reaction and fluorescent-activated cell sorting. In fact, cardiac myocytes had equivalent amounts of TLR4 as endothelium; however, only the latter is responsive to LPS. Furthermore, signaling pathways downstream of TLR4 were not activated during direct LPS treatment of myocytes. In conclusion, TLR4 on leukocytes, and not on cardiac myocytes, is important for cardiac myocyte impairment during endotoxemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3