Mechanosensitive Cation Channels in Arterial Smooth Muscle Cells Are Activated by Diacylglycerol and Inhibited by Phospholipase C Inhibitor

Author:

Park Kyoung Sun1,Kim Yangmi1,Lee Young-Ho1,Earm Yung E.1,Ho Won-Kyung1

Affiliation:

1. From the Department of Physiology (K.S.P., Y.K., Y.E.E., W.-K.H.) and National Research Laboratory for Cellular Signalling (K.S.P., Y.E.E.), Seoul National University College of Medicine, Seoul, Korea, and the Department of Physiology (Y.-H.L.), Yonsei University College of Medicine, Seoul, Korea. Y.M. Kim is now at the Department of Physiology, College of Medicine, Chungbuk National University, Cheongju, Korea.

Abstract

Mechanosensitive cation channels may be involved in the development of the myogenic tone of arteries. The molecular identity of these channels is not clear, but transient receptor potential channels (TRPCs) are good candidates. In the present study, we searched for mechanosensitive channels at the single-channel level in arterial smooth muscle cells using the patch-clamp technique and investigated the channel properties in the light of properties of TRPCs. With 140 mmol/L CsCl in the pipette solution, application of negative pressures to the back of the pipette induced the activation of channels the open probability of which increased with the amount of negative pressure. The current-voltage relationship was linear in symmetrical ionic conditions, and the single-channel conductances for Cs + , K + , and Na + were 30, 36, and 27 pS, respectively. When NMDG + was substituted for Cs + in the pipette solution, inward currents were abolished, whereas outward currents remained active, indicating that the channels were nonselective to cations. The channel activity was blocked by intracellular Gd 3+ and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid and increased by diacylglycerol and by cyclopiazonic acid. Phospholipase C inhibitor (U73122) inhibited not only channel activity but also the development of myogenic tone induced by stretching of the basilar arteries. These results suggest that the ion channel responsible for the development of myogenic tone is the 30-pS mechanosensitive cation channel that exhibits properties similar to those of TRPCs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3