Affiliation:
1. From the Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Heart and Vascular Institute, Detroit, Mich.
Abstract
Passive mechanical containment of failing left ventricle (LV) with the Acorn Cardiac Support Device (CSD) was shown to prevent progressive LV dilation in dogs with heart failure (HF) and increase ejection fraction. To examine possible mechanisms for improved LV function with the CSD, we examined the effect of CSD therapy on the expression of cardiac stretch response proteins, myocyte hypertrophy, sarcoplasmic reticulum Ca
2+
-ATPase activity and uptake, and mRNA gene expression for myosin heavy chain (MHC) isoforms. HF was produced in 12 dogs by intracoronary microembolization. Six dogs were implanted with the CSD and 6 served as concurrent controls. LV tissue from 6 normal dogs was used for comparison. Compared with normal dogs, untreated HF dogs showed reduced cardiomyocyte contraction and relaxation, upregulation of stretch response proteins (p21ras, c-fos, and p38 α/β mitogen-activated protein kinase), increased myocyte hypertrophy, reduced SERCA2a activity with unchanged affinity for calcium, reduced proportion of mRNA gene expression for α-MHC, and increased proportion of β-MHC. Therapy with the CSD was associated with improved cardiomyocyte contraction and relaxation, downregulation of stretch response proteins, attenuation of cardiomyocyte hypertrophy, increased affinity of the pump for calcium, and restoration of α- and β-MHC isoforms ratio. The results suggest that preventing LV dilation and stretch with the CSD promotes downregulation of stretch response proteins, attenuates myocyte hypertrophy and improves SR calcium cycling. These data offer possible mechanisms for improvement of LV function after CSD therapy.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献