Transient Exposure to Hydrogen Peroxide Causes an Increase in Mitochondria-Derived Superoxide As a Result of Sustained Alteration in L-Type Ca 2+ Channel Function in the Absence of Apoptosis in Ventricular Myocytes

Author:

Viola Helena M.1,Arthur Peter G.1,Hool Livia C.1

Affiliation:

1. From the School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley; and Western Australian Institute for Medical Research, Crawley.

Abstract

We sought to understand the effect of a transient exposure of cardiac myocytes to H 2 O 2 at a concentration that did not induce apoptosis. Myocytes were exposed to 30 μmol/L H 2 O 2 for 5 minutes followed by 10 U/mL catalase for 5 minutes to degrade the H 2 O 2 . Cellular superoxide was measured using dihydroethidium. Transient exposure to H 2 O 2 caused a 66.4% increase in dihydroethidium signal compared with controls exposed to only catalase, without activation of caspase 3 or evidence of necrosis. The increase in dihydroethidium signal was attenuated by the mitochondrial inhibitors myxothiazol or carbonyl cyanide p -(trifluoromethoxy)phenyl-hydrazone and when calcium uptake by the mitochondria was inhibited with Ru360. We investigated the L-type Ca 2+ channel ( I Ca-L ) as a source of calcium influx. Nisoldipine, an inhibitor of I Ca-L , attenuated the increase in superoxide. Basal channel activity increased from 5.4 to 8.9 pA/pF. Diastolic calcium was significantly increased in quiescent and contracting myocytes after H 2 O 2 . The response of I Ca-L to β-adrenergic receptor stimulation was used as a functional reporter because decreasing intracellular H 2 O 2 alters the sensitivity of I Ca-L to isoproterenol. H 2 O 2 increased the K 0.5 required for activation of I Ca-L by isoproterenol from 5.8 to 27.8 nmol/L. This effect and the increase in basal current density persisted for several hours after H 2 O 2 . We propose that extracellular H 2 O 2 is associated with an increase in superoxide from the mitochondria caused by an increase in Ca 2+ influx from I Ca-L . The effect persists because a positive feedback exists among increased basal channel activity, elevated intracellular calcium, and superoxide production by the mitochondria.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3