Phosphorylation of Troponin I Controls Cardiac Twitch Dynamics

Author:

Pi YeQing1,Kemnitz Kara R.1,Zhang Dahua1,Kranias Evangelia G.1,Walker Jeffery W.1

Affiliation:

1. From the Department of Physiology (Y.P., K.R.K., D.Z., J.W.W.), University of Wisconsin, Madison, Wis; and the Department of Pharmacology and Cell Biophysics (E.G.K.), University of Cincinnati, Cincinnati, Ohio.

Abstract

The cardiac myofilament protein troponin I (cTnI) is phosphorylated by protein kinase C (PKC), a family of serine/threonine kinases activated within heart muscle by a variety of agonists. cTnI is also a substrate for cAMP-dependent protein kinase (PKA) activated during β-adrenergic signaling. To investigate the role of cTnI phosphorylation in contractile regulation by these pathways, we generated transgenic mice harboring a mutated cTnI protein lacking phosphorylation sites for PKC (serine 43/45 and threonine 144 mutated to alanine) and for PKA (serine 23/24 mutated to alanine). Transgenic mice were interbred with cTnI-knockout mice to ensure the absence of endogenous phosphorylatable cTnI. Here, we report that regulation of myocyte twitch kinetics by β-stimulation and by endothelin-1 was altered in myocytes containing mutant cTnI. In wild-type myocytes, the β-agonist isoproterenol decreased twitch duration and relaxation time constant (τ) by 37% to 44%. These lusitropic effects of isoproterenol were reduced by about half in nonphosphorylatable cTnI mutant myocytes and were absent in cTnI mutants also lacking phospholamban (generated by crossing cTnI mutants with phospholamban-knockout mice). These observations are consistent with important roles for both cTnI and phospholamban phosphorylation in accelerating relaxation after β-adrenergic stimulation. In contrast, endothelin-1 increased twitch duration by 32% and increased τ by 58%. These endothelin-1 effects were substantially blunted in nonphosphorylatable cTnI myocytes, indicating that PKC phosphorylation of cTnI slows cardiac relaxation and increases twitch duration. We propose that β-agonists and endothelin-1 regulate cardiac twitch dynamics in opposite directions in part through phosphorylation of the myofilament protein cTnI on distinct sites.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3