Affiliation:
1. From the Departments of Physiology and Biophysics (B.R.) and Neurobiology and Behavior (D.M.), Institute of Molecular Cardiology, State University of New York at Stony Brook, Stony Brook, NY.
Abstract
A potentially important mechanism controlling ion channel expression is homeostatic regulation, which can act to maintain a stable electrophysiological phenotype in cardiac myocytes as well as to provide plasticity in response to genetic, pathological, or pharmacological insults. The capabilities and limitations of the homeostatic regulatory mechanisms that contribute to the control of cardiac ion channel expression are the primary topic of this review.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献