Ischemic Protection and Myofibrillar Cardiomyopathy

Author:

Hahn Harvey S.1,Yussman Martin G.1,Toyokawa Tsuyoshi1,Marreez Yehia1,Barrett Thomas J.1,Hilty K. Chad1,Osinska Hanna1,Robbins Jeffrey1,Dorn Gerald W.1

Affiliation:

1. From the Department of Internal Medicine, Division of Cardiology (H.S.H., M.G.Y., T.T., Y.M., T.J.B., G.W.D.), University of Cincinnati Medical Center, Cincinnati, Ohio; and the Division of Cardiovascular Molecular Biology (H.O., J.R.), the Children’s Hospital Research Foundation, Cincinnati, Ohio.

Abstract

To delineate the in vivo cardiac functions requiring normal δ protein kinase C (PKC) activity, we pursued loss-of-function through transgenic expression of a δPKC-specific translocation inhibitor protein fragment, δV1, in mouse hearts. Initial results using the mouse α-myosin heavy chain (αMHC) promoter resulted in a lethal heart failure phenotype. Viable δV1 mice were therefore obtained using novel attenuated mutant αMHC promoters lacking one or the other thyroid response element (TRE-1 and -2). In transgenic mouse hearts, δV1 decorated cytoskeletal elements and inhibited ischemia-induced δPKC translocation. At high levels, δV1 expression was uniformly lethal, with depressed cardiac contractile function, increased expression of fetal cardiac genes, and formation of intracardiomyocyte protein aggregates. Ultrastructural and immunoconfocal analyses of these aggregates revealed focal cytoskeletal disruptions and localized concentrations of desmin and αB-crystallin. In individual cardiomyocytes, cytoskeletal abnormalities correlated with impaired contractile function. Whereas desmin and αB-crystallin protein were increased ≈4-fold in δV1 hearts, combined overexpression of these proteins at these levels was not sufficient to cause any detectable cardiac pathology. At low levels, δV1 expression conferred striking resistance to postischemic dysfunction, with no measurable effects on basal cardiac structure, function, or gene expression. Intermediate expression of δV1 conferred modest basal contractile depression with less ischemic protection, associated with abnormal cardiac gene expression, and a histological picture of infrequent cardiomyocyte cytoskeletal deformities. These results validate an approach of δPKC inhibition to protect against myocardial ischemia, but indicate that there is a threshold level of δPKC activation that is necessary to maintain normal cardiomyocyte cytoskeletal integrity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3