Migration Inhibitory Factor Mediates Angiogenesis via Mitogen-Activated Protein Kinase and Phosphatidylinositol Kinase

Author:

Amin M. Asif1,Volpert Olga V.1,Woods James M.1,Kumar Pawan1,Harlow Lisa A.1,Koch Alisa E.1

Affiliation:

1. From the Departments of Medicine (M.A.A., J.M.W., P.K., L.A.H., A.E.K.) and Urology (O.V.V.), Northwestern University Feinberg School of Medicine, Chicago, Ill; Veterans Administration Chicago Health Care System (A.E.K.), Lakeside Division, Chicago, Ill.

Abstract

In this study, we investigated the effects of migration inhibitory factor (rhMIF) on angiogenesis-related signaling cascades and apoptosis in human endothelial cells (ECs). We show that in vitro rhMIF induces migration and tube formation in Matrigel of human dermal microvascular endothelial cells (HMVECs), with potency comparable to that of basic fibroblast growth factor. In vivo, rhMIF induces angiogenesis in Matrigel plugs and in the corneal bioassay. Using panels of relatively specific kinase inhibitors, antisense oligonucleotides, and dominant-negative mutants, we show that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) are critical for MIF-dependent HMVEC migration, whereas Src and p38 kinases are nonessential. Moreover, we demonstrate that rhMIF induces time-dependent increases in phosphorylation levels of MEK1/2, Erk1/2, and Elk-1, as well as PI3K, and its effector kinase, Akt, in HMVECs. Studies with dominant-negative mutants and antisense oligonucleotides corroborate these effects in HMVECs. Furthermore, we demonstrate that rhMIF-induced angiogenesis in the rat cornea in vivo and in the ex vivo endothelial cell morphogenesis assay is also MAPK- and PI3K-dependent. Our findings support a role for MIF as an angiogenic factor and provide a rationale for the use of MIF as a therapeutic inducer of neovascularization in the development of collateral circulation in coronary artery disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3