Affiliation:
1. From the Division of Pulmonary and Vascular Biology (C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas; and Department of Molecular and Experimental Medicine (H.D., J.H.G.), The Scripps Research Institute, La Jolla, Calif.
Abstract
It is well recognized that high-density lipoprotein (HDL)-cholesterol is antiatherogenic and serves a role in mediating cholesterol efflux from cells. However, HDL has multiple additional endothelial and antithrombotic actions that may also afford cardiovascular protection. HDL promotes the production of the atheroprotective signaling molecule nitric oxide (NO) by upregulating endothelial NO synthase (eNOS) expression, by maintaining the lipid environment in caveolae where eNOS is colocalized with partner signaling molecules, and by stimulating eNOS as a result of kinase cascade activation by the high-affinity HDL receptor scavenger receptor class B type I (SR-BI). HDL also protects endothelial cells from apoptosis and promotes their growth and their migration via SR-BI–initiated signaling. As importantly, there is evidence of a variety of mechanisms by which HDL is antithrombotic and thereby protective against arterial and venous thrombosis, including through the activation of prostacyclin synthesis. The antithrombotic properties may also be related to the abilities of HDL to attenuate the expression of tissue factor and selectins, to downregulate thrombin generation via the protein C pathway, and to directly and indirectly blunt platelet activation. Thus, in addition to its cholesterol-transporting properties, HDL favorably regulates endothelial cell phenotype and reduces the risk of thrombosis. With further investigation and resulting greater depth of understanding, these mechanisms may be harnessed to provide new prophylactic and therapeutic strategies to combat atherosclerosis and thrombotic disorders.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
531 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献