Affiliation:
1. From State University of New York (SUNY), Upstate Medical University, Syracuse, NY.
Abstract
Atrial fibrillation (AF) may result from stationary reentry in the left atrium (LA), with fibrillatory conduction toward the right atrium (RA). We hypothesize that periodic input to the RA at an exceedingly high frequency results in disorganized wave propagation, compatible with fibrillatory conduction. Simultaneous endocardial and epicardial optical mapping (di-4-ANEPPS) was performed in isolated, coronary-perfused sheep RA. Rhythmic pacing of Bachmann’s bundle allowed well-controlled and realistic conditions for LA-driven RA. Pacing at increasingly higher frequencies (2.0 to 6.0 Hz) led to increasing delays in activation distal to major branching sites of the crista terminalis and pectinate bundles, culminating in spatially distributed intermittent blockade at or above ≈6.5 Hz. At this “breakdown frequency,” the direction of RA propagation became completely variable from beat to beat and thus transformed into fibrillatory conduction. Such frequency-dependent changes were independent of action potential duration. Rather, the spatial boundaries between proximal and distal frequencies correlated well with branch sites of the pectinate musculature. Thus, there exists a breakdown frequency in the sheep RA below which activity is periodic throughout the atrium and above which it is fibrillation-like. The data are consistent with the ideas that during AF, high-frequency activation initiated in the LA undergoes fibrillatory conduction toward the RA, and that sink-to-source effect at branch points of the crista terminalis and pectinate muscles is important in determining the complexity of the arrhythmia.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献