17β-Estradiol Reduces Cardiomyocyte Apoptosis In Vivo and In Vitro via Activation of Phospho-Inositide-3 Kinase/Akt Signaling

Author:

Patten Richard D.1,Pourati Isaac1,Aronovitz Mark J.1,Baur Jason1,Celestin Flore1,Chen Xin1,Michael Ashour1,Haq Syed1,Nuedling Simone1,Grohe Christian1,Force Thomas1,Mendelsohn Michael E.1,Karas Richard H.1

Affiliation:

1. From the Molecular Cardiology Research Institute (R.D.P., I.P., M.J.A., J.B., F.C., X.C., A.M., S.H., T.F., M.E.M., R.H.K.), Tufts-New England Medical Center, Boston, Mass; and Medizinische Universitäts-Poliklinik (S.N., C.G.), Bonn, Germany.

Abstract

Female gender and estrogen-replacement therapy in postmenopausal women are associated with improved heart failure survival, and physiological replacement of 17β-estradiol (E2) reduces infarct size and cardiomyocyte apoptosis in animal models of myocardial infarction (MI). Here, we characterize the molecular mechanisms of E2 effects on cardiomyocyte survival in vivo and in vitro. Ovariectomized female mice were treated with placebo or physiological E2 replacement, followed by coronary artery ligation (placebo-MI or E2-MI) or sham operation (sham) and hearts were harvested 6, 24, and 72 hours later. After MI, E2 replacement significantly increased activation of the prosurvival kinase, Akt, and decreased cardiomyocyte apoptosis assessed by terminal deoxynucleotidyltransferase dUTP nick-end labeling (TUNEL) staining and caspase 3 activation. In vitro, E2 at 1 or 10 nmol/L caused a rapid 2.7-fold increase in Akt phosphorylation and a decrease in apoptosis as measured by TUNEL staining, caspase 3 activation, and DNA laddering in cultured neonatal rat cardiomyocytes. The E2-mediated reduction in apoptosis was reversed by an estrogen receptor (ER) antagonist, ICI 182,780, and by phospho-inositide-3 kinase inhibitors, LY294002 and Wortmannin. Overexpression of a dominant negative-Akt construct also blocked E2-mediated reduction in cardiomyocyte apoptosis. These data show that E2 reduces cardiomyocyte apoptosis in vivo and in vitro by ER- and phospho-inositide-3 kinase–Akt–dependent pathways and support the relevance of these pathways in the observed estrogen-mediated reduction in myocardial injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 292 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3