Reduced Wall Compliance Suppresses Akt-Dependent Apoptosis Protection Stimulated by Pulse Perfusion

Author:

Li Manxiang1,Chiou Kuan-Rau1,Bugayenko Artem1,Irani Kaikobad1,Kass David A.1

Affiliation:

1. From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Md.

Abstract

Reduced arterial compliance and increased pulse pressure are common and major risk factors for cardiovascular disease. Here, we reveal a novel mechanism whereby loss of wall distensibility blunts endothelial cell protection to oxidant stress–induced apoptosis. Bovine aortic endothelial cells cultured in compliant or stiff silastic tubes were pulse perfused by arterial pressure/flow waveforms generated by a servo-pump. Pulse perfusion induced time-dependent Akt activation peaking >6-fold after 2 hours in compliant tubes and a similar time course but half the magnitude in stiff tubes. This was accompanied by quantitatively similar disparities in phosphoinositide-3 kinase activation and in Akt-stimulated suppressors of apoptosis: glycogen synthase kinase-3β, forkhead, and Bad. Cells perfused in compliant tubes had twice the protection against H 2 O 2 -stimulated apoptosis than those in stiffer tubes. This protection was lost by pretreatment with an Akt inhibitor and restored in cells transfected with myristoylated Akt yet perfused in stiff tubes. Shear and stretch Akt signaling coupled to different upstream pathways as inhibition of vascular endothelial growth factor receptor 2 (VEGF2R) or disruption of caveolae blocked steady and pulse flow–mediated activation, yet did not suppress phosphorylated Akt induced by pulse perfusion in compliant tubes (concomitant stretch). Unlike Akt, reactive oxygen species, activated nuclear factor κB, and suppression of H 2 O 2 -stimulated c-Jun-N-terminal kinase activity were similar in pulse-perfused compliant and stiff tubes. Thus, cyclic endothelial cell stretch by pulse perfusion enhances Akt-dependent antiapoptosis above that induced by steady or phasic shear stress and, unlike the latter, signals via a VEGF2R/caveolae-independent pathway. Enhancing this stretch pathway may prove useful for improving endothelial function in stiff arteries.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3