DNA Microarray Profiling to Identify Angiotensin-Responsive Genes in Vascular Smooth Muscle Cells

Author:

Campos Alexandre H.1,Zhao Ying1,Pollman Matthew J.1,Gibbons Gary H.1

Affiliation:

1. From the Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Ga.

Abstract

Angiotensin II (Ang II) induces changes in vessel structure by its capacity to activate genes that are coupled to signaling pathways such as extracellular signal–regulated kinase (ERK), p38, and phosphatidylinositol 3-kinase (PI3K). Using a DNA microarray containing 5088 genes and expressed sequence tags, we initially established a database of replicated experiments (n=4) to define the variances in mRNA expression in response to Ang II versus vehicle treatment. We observed a wide range of values for the coefficients of variation in a gene-specific manner. Guided by power calculations, we used statistical inference on a sufficient number of experimental replicates to minimize the number of false-negatives and define a subset of Ang II–responsive genes ( P <0.05). To further characterize the molecular circuitry that couples Ang II stimulation with mRNA expression, we assessed expression profiles in the presence and absence of inhibitors of ERK, p38, and PI3K. Using two different methods of computational cluster analysis, we identified a subset of six matricellular proteins (eg, osteopontin and plasminogen activator inhibitor-1) that are coordinately upregulated by Ang II via an ERK/p38-dependent pathway. In addition, these cluster analyses identified calpactins I and II as novel Ang II–responsive genes. Given that Ang II promotes vascular lesion formation, we examined whether this matricellular gene cluster was also coordinately regulated in vivo. Indeed, we demonstrate that both calpactin I and osteopontin are upregulated in response to vascular injury. Taken together, the combined use of DNA microarrays, statistical inference, and cluster analysis identified novel, coordinately regulated Ang II–responsive genes that may mediate vascular lesion formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3