Hypoxia-Inducible Factor-1 Mediates Activation of Cultured Vascular Endothelial Cells by Inducing Multiple Angiogenic Factors

Author:

Yamakawa Midori1,Liu Louis X.1,Date Taro1,Belanger Adam J.1,Vincent Karen A.1,Akita Geoffrey Y.1,Kuriyama Takayuki1,Cheng Seng H.1,Gregory Richard J.1,Jiang Canwen1

Affiliation:

1. From Genzyme Corporation (M.Y., L.X.L., T.D., A.J.B., K.A.V., G.Y.A., S.H.C., R.J.G., C.J.), Framingham, Mass; and the Department of Respirology (T.K.), Graduate School of Medicine, Chiba University, Chiba, Japan.

Abstract

Hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of vascular endothelial growth factor (VEGF) and other hypoxia-responsive genes. Transgenic expression of a constitutively stable HIF-1α mutant increases the number of vascular vessels without vascular leakage, tissue edema, or inflammation. This study aimed to investigate the molecular basis by which HIF-1 mediates the angiogenic response to hypoxia. In primary human endothelial cells, hypoxia, desferrioxamine, or infection with Ad2/HIF-1α/VP16, an adenoviral vector encoding a constitutively stable hybrid form of HIF-1α, increased the mRNA and protein levels of VEGF, angiopoietin-2 (Ang-2), and angiopoietin-4 (Ang-4). Infection with Ad2/CMVEV (a control vector expressing no transgene) had no effect. Angiopoietin-1 (Ang-1) expression was not detected in human endothelial cells. Ang-4 was also induced by hypoxia or Ad2/HIF-1α/VP16 in human cardiac cells, whereas Ang-1 expression remained unchanged. Recombinant Ang-4 protein protected endothelial cells against serum starvation-induced apoptosis and increased cultured endothelial cell migration and tube formation. Ad2/HIF-1α/VP16 stimulated endothelial cell proliferation and tube formation. Hypoxia- or Ad2/HIF-1α/VP16-induced tube formation was significantly reduced by a Tie-2 inhibitor. These results suggest that HIF-1 mediates the angiogenic response to hypoxia by upregulating the expression of multiple angiogenic factors. Ang-4 can function similarly as Ang-1 and substitute for Ang-1 to participate in hypoxia-induced angiogenesis. Activation of the angiopoietin/Tie-2 system may play a role in the ability of HIF-1 to induce hypervascularity without excessive permeability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3