Chronic Estrogen Treatment Increases Levels of Endothelial Nitric Oxide Synthase Protein in Rat Cerebral Microvessels

Author:

McNeill Anne Marie1,Kim Nancy1,Duckles Sue P.1,Krause Diana N.1

Affiliation:

1. From the Department of Pharmacology, College of Medicine, University of California at Irvine.

Abstract

Background and Purpose —A number of studies indicate that the female gonadal hormone, estrogen, confers protection against cerebrovascular disorders such as stroke. One postulated mechanism for these effects of estrogen is an action on the enzyme endothelial nitric oxide synthase (eNOS), which produces the vasodilatory molecule NO. We have investigated the hypothesis that estrogen increases expression of eNOS in cerebral microvessels of male and female rats. Methods —We measured levels of eNOS protein by Western blot in cerebral microvessels isolated from 7 groups of animals: females, ovariectomized females, ovariectomized females treated with estrogen, males, castrated males, castrated males treated with estrogen, and castrated males treated with testosterone. Results —Ovariectomized female rats treated with estrogen had 17.4-fold greater levels of eNOS protein in cerebral microvessels than ovariectomized females, and intact females had 16.6-fold greater levels than ovariectomized females ( P <0.01). In intact females, cerebral microvessel eNOS protein levels were 9.2-fold higher than those of intact males ( P <0.05). Levels of eNOS protein in castrated males, castrated males treated with testosterone, and males were not different from each other. Estrogen treatment of castrated animals resulted in an 18.8-fold increase in cerebral microvessel eNOS protein ( P <0.05). Conclusions —Chronic estrogen treatment increases levels of eNOS protein in cerebral microvessels of male and female rats. This increase in eNOS protein correlates with our previous functional findings indicating that estrogen exposure increases NO modulation of cerebrovascular reactivity in both male and female animals. Upregulation of eNOS expression may contribute to the neuroprotective effect of estrogen.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3