Adenovirus-Mediated Kallikrein Gene Delivery Reduces Aortic Thickening and Stroke-Induced Death Rate in Dahl Salt-Sensitive Rats

Author:

Zhang Jenny J.1,Chao Lee1,Chao Julie1

Affiliation:

1. From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston.

Abstract

Background and Purpose —Kallikrein gene delivery has been shown to attenuate hypertension, cardiac hypertrophy, and renal injury in hypertensive animal models. The aim of this study was to investigate the potential protective effects of kallikrein gene delivery in salt-induced stroke and cerebrovascular disorders. Methods —Adenovirus harboring the human tissue kallikrein gene (AdCMV-cHK) was delivered intravenously into Dahl salt-sensitive (DS) rats after 4 weeks of high salt loading, and blood pressure was monitored weekly for 9 weeks. Results —A single injection of AdCMV-cHK caused a significant reduction of systolic blood pressure compared with that in control rats, with or without an injection of adenovirus carrying the LacZ (control) gene (AdCMV-LacZ). A maximal blood pressure reduction of 21 mm Hg was observed 2 weeks after gene delivery. The stroke mortality rate of DS rats (AdCMV-LacZ group versus the AdCMV-cHK group) was significantly decreased: 38% versus 9% at 3 weeks and 54% versus 27% at 5 weeks after gene delivery. Kallikrein gene delivery significantly attenuated salt-induced aortic hypertrophy, as evidenced by reduced thickness of the aortic wall. Recombinant human tissue kallikrein was detected in rat serum and urine after gene transfer. Kinin-releasing activities in the brain as well as urinary kinin and cGMP levels were significantly increased in rats receiving the kallikrein gene. Conclusions —This is the first study to demonstrate the protective effect of kallikrein gene delivery in reducing salt-induced stroke mortality and vascular dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3