Affiliation:
1. From the Massachusetts Institute of Technology (H.M., H.M.N., A.G., P.S., E.R.E.), Cambridge, and the Transplantation Research Center (M.H.S.), Brigham and Women’s Hospital & Children’s Hospital and Harvard Medical School, Boston, Mass.
Abstract
Background—
Endothelial cell (EC) dysfunction represents the first manifestation of atherosclerotic disease. Restoration of endothelium via seeding or transfection is hampered by local alterations in flow, inflammation, and metabolic activation. Perivascular EC matrix implants are shielded from these forces and still control vascular repair. The host immune response to such implants, however, remains largely unknown. We investigated the effect of embedding of ECs within 3-dimensional matrices on host immune responses in vitro and in vivo.
Methods and Results—
We compared expression of major histocompatibility complex (MHC), costimulatory, and adhesion molecules by free aortic ECs or ECs embedded in Gelfoam matrices by flow-cytometry. T-cell proliferation was assessed by [
3
H] thymidine incorporation. Humoral immune response (ELISA and FACS analysis) and cellular (histopathology) infiltration were investigated after subcutaneous injection of free porcine aortic ECs (PAEs) or of a Gelfoam/EC block, or after concomitant injection of PAEs adjacent to Gelfoam in rats. Aortic ECs embedded in Gelfoam expressed lower levels of MHC class II, costimulatory, and adhesion molecules compared with free ECs (
P
<0.001), and induced 3-fold less proliferation of human CD4
+
T-cells (
P
<0.0005). Implantation of a Gelfoam/EC block in rats nearly abrogated the immune response with 1.75- to 9.0-fold downregulation in tumor necrosis factor-α, interleukin-6, monocyte chemotactic protein-1, and PAE-specific immunoglobulin G (
P
<0.005) and 3.3- to 4.5-fold reduction in leukocytic tissue infiltration. Injecting PAEs adjacent to Gelfoam induced a significant response comparable to that of free implanted PAEs.
Conclusions—
Embedding ECs within 3-dimensional matrices alters the host immune response by inhibiting expression of MHC class II, costimulatory, and adhesion molecules, offering the rationale to develop novel therapies for vascular diseases.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献