Novel gp91 phox Homologues in Vascular Smooth Muscle Cells

Author:

Lassègue Bernard1,Sorescu Dan1,Szöcs Katalin1,Yin QiQin1,Akers Marjorie1,Zhang Yong1,Grant Sharon L.1,Lambeth J. David1,Griendling Kathy K.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology (B.L., D.S., K.S., Q.Q.Y., M.A., Y.Z., S.L.G., K.K.G.) and Department of Biochemistry (J.D.L.), Emory University, Atlanta, Ga.

Abstract

Abstract —Emerging evidence indicates that reactive oxygen species are important regulators of vascular function. Although NAD(P)H oxidases have been implicated as major sources of superoxide in the vessel wall, the molecular identity of these proteins remains unclear. We recently cloned nox1 (formerly mox-1), a member of a new family of gp91 phox homologues, and showed that it is expressed in proliferating vascular smooth muscle cells (VSMCs). In this study, we examined the expression of three nox family members, nox1, nox4, and gp91 phox , in VSMCs, their regulation by angiotensin II (Ang II), and their role in redox-sensitive signaling. We found that both nox1 and nox4 are expressed to a much higher degree than gp91 phox in VSMCs. Although serum, platelet-derived growth factor (PDGF), and Ang II downregulated nox4, they markedly upregulated nox1, suggesting that this enzyme may account for the delayed phase of superoxide production in these cells. Furthermore, an adenovirus expressing antisense nox1 mRNA completely inhibited the early phase of superoxide production induced by Ang II or PDGF and significantly decreased activation of the redox-sensitive signaling molecules p38 mitogen-activated protein kinase and Akt by Ang II. In contrast, redox-independent pathways induced by PDGF or Ang II were unaffected. These data support a role for nox1 in redox signaling in VSMCs and provide insight into the molecular identity of the VSMC NAD(P)H oxidase and its potentially critical role in vascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3