Interaction Between the Angiotensin-(1–7) Mas Receptor and the Dopamine D2 Receptor

Author:

Rukavina Mikusic Natalia L.1ORCID,Silva Mauro G.1,Mazzitelli Luciana R.1,Santos Robson A.S.2ORCID,Gómez Karina A.3ORCID,Grecco Hernán E.4,Gironacci Mariela M.1ORCID

Affiliation:

1. Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina (N.L.R.M., M.G.S., L.R.M., M.M.G.).

2. Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil (R.A.S.S.).

3. Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina (K.A.G.).

4. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. Física and Instituto de Física de Buenos Aires (IFIBA-CONICET), Buenos Aires, Argentina (H.E.G.).

Abstract

Ang (angiotensin) 1–7 MasR (Mas receptor) and D2R (dopamine D2 receptor) stimulation is coupled to anti-inflammatory responses. In the present work, we investigated the hypothesis that the anti-inflammatory action mediated by both receptors results from MasR-D2R heteromerization. Human monocyte (THP-1) cells differentiated to macrophages and exposed to lipopolysaccharide were employed. Ang (1–7) and the D2R agonist SUM (sumanirole) induced a decrease in proinflammatory IL (interleukin) 6 release in human macrophages exposed to a proinflammatory stimulus. The Ang (1–7)–induced decrease in IL-6 was blocked by the D2R antagonist. Conversely, the SUM induced decrease in IL-6 was prevented by the MasR antagonist and when MasR expression was downregulated, suggesting MasR-D2R interaction. Co-immunoprecipitation assay in THP-1 cells and in human monocyte differentiated macrophages from peripheral blood mononuclear cells confirmed MasR-D2R interaction. To avoid the influence from other receptors, MasR-D2R interaction was characterized in transfected human embryonic kidney 293T cells. Fluorescence resonance energy transfer analysis showed that MasR and D2R formed a constitutive heteromer, which was not modified by their agonists. Ang (1–7) and dopamine stimulated ERK (extracellular signal-regulated kinase) 1/2 and Akt (protein kinase B) phosphorylation only in cells expressing MasR-D2R heteromers, but not in cells expressing each receptor alone. Ang (1–7)–stimulated ERK1/2 and Akt phosphorylation was prevented by D2R blockade while the effect of dopamine was prevented by MasR blockade, reinforcing the fact that MasR-D2R heteromers are involved in ERK1/2 and Akt activation induced by their agonists. Our findings provide new evidence regarding the mechanisms underlying the cross-talk between the Ang (1–7)/MasR axis and the dopaminergic system in response to a proinflammatory process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3