High-Protein Diet–Induced Glomerular Hyperfiltration Is Dependent on Neuronal Nitric Oxide Synthase β in the Macula Densa via Tubuloglomerular Feedback Response

Author:

Wei Jin1,Zhang Jie1,Jiang Shan1,Wang Lei1,Persson A. Erik G.2,Liu Ruisheng1

Affiliation:

1. From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)

2. Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Sweden (A.E.G.P.).

Abstract

It is well known that high protein intake increases glomerular filtration rate. Evidence from several studies indicated that NO and tubuloglomerular feedback (TGF) mediate the effect. However, a recent study with a neuronal NO synthase-α knockout model refuted this mechanism and concluded that neither neuronal NO synthase nor TGF response is involved in the protein-induced hyperfiltration. To examine the discrepancy, this study tested a hypothesis that neuronal NO synthase-β in the macula densa mediates the high-protein diet–induced glomerular hyperfiltration via TGF mechanism. We examined the effects of high protein intake on NO generation at the macula densa, TGF response, and glomerular filtration rate in wild-type and macula densa–specific neuronal NO synthase KO mice. In wild-type mice, high-protein diet increased kidney weight, glomerular filtration rate, and renal blood flow, while reduced renal vascular resistance. TGF response in vivo and in vitro was blunted, and NO generation in the macula densa was increased following high-protein diet, associated with upregulations of neuronal NO synthase-β expression and phosphorylation at Ser1417. In contrast, these high-protein diet–induced changes in NO generation at the macula densa, TGF response, renal blood flow, and glomerular filtration rate in wild-type mice were largely attenuated in macula densa–specific neuronal NO synthase KO mice. In conclusion, we demonstrated that high-protein diet–induced glomerular hyperfiltration is dependent on neuronal NO synthase β in the macula densa via TGF response.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3