Novel Treatment of Hypertension by Specifically Targeting E2F for Restoration of Endothelial Dihydrofolate Reductase and eNOS Function Under Oxidative Stress

Author:

Li Hong123,Li Qiang12,Zhang Yixuan12,Liu Wenting4,Gu Bo12,Narumi Taro12,Siu Kin Lung12,Youn Ji Youn12,Liu Peiqing3,Yang Xia4,Cai Hua12

Affiliation:

1. From the Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles

2. Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratories (H.L., Q.L., Y.Z., B.G., T.N., K.L.S., J.Y.Y., H.C.), David Geffen School of Medicine, University of California, Los Angeles

3. Department of Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China (H.L., P.L.).

4. Department of Integrative Biology and Physiology (W.L., X.Y.), David Geffen School of Medicine, University of California, Los Angeles

Abstract

We have shown that hydrogen peroxide (H 2 O 2 ) downregulates tetrahydrobiopterin salvage enzyme DHFR (dihydrofolate reductase) to result in eNOS (endothelial NO synthase) uncoupling and elevated blood pressure. Here, we aimed to delineate molecular mechanisms underlying H 2 O 2 downregulation of endothelial DHFR by examining transcriptional pathways hypothesized to modulate DHFR expression and effects on blood pressure regulation of targeting these novel mechanisms. H 2 O 2 dose and time dependently attenuated DHFR mRNA and protein expression and enzymatic activity in endothelial cells. Deletion of E2F-binding sites, but not those of Sp1 (specificity protein 1), abolished H 2 O 2 attenuation of DHFR promoter activity. Overexpression of E2F1/2/3a activated DHFR promoter at baseline and alleviated the inhibitory effect of H 2 O 2 on DHFR promoter activity. H 2 O 2 treatment diminished mRNA and protein expression of E2F1/2/3a, whereas overexpression of E2F isoforms increased DHFR protein levels. Chromatin immunoprecipitation assay indicated direct binding of E2F1/2/3a to the DHFR promoter, which was weakened by H 2 O 2 . E2F1 RNA interference attenuated DHFR protein levels, whereas its overexpression elevated tetrahydrobiopterin levels and tetrahydrobiopterin/dihydrobiopterin ratios in vitro and in vivo. In Ang II (angiotensin II)–infused mice, adenovirus-mediated overexpression of E2F1 markedly abrogated blood pressure to control levels, by restoring endothelial DHFR function to improve NO bioavailability and vasorelaxation. Bioinformatic analyses confirmed a positive correlation between E2F1 and DHFR in human endothelial cells and arteries, and downregulation of both by oxidized phospholipids. In summary, endothelial DHFR is downregulated by H 2 O 2 transcriptionally via an E2F-dependent mechanism, and that specifically targeting E2F1/2/3a to restore DHFR and eNOS function may serve as a novel therapeutic option for the treatment of hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3