Null Mutation of the Nicotinamide Adenine Dinucleotide Phosphate–Oxidase Subunit p67 phox Protects the Dahl-S Rat From Salt-Induced Reductions in Medullary Blood Flow and Glomerular Filtration Rate

Author:

Evans Louise C.1,Ryan Robert P.1,Broadway Elizabeth1,Skelton Meredith M.1,Kurth Theresa1,Cowley Allen W.1

Affiliation:

1. From the Department of Physiology, Medical College of Wisconsin, Milwaukee.

Abstract

Null mutations in the p67 phox subunit of nicotinamide adenine dinucleotide phosphate–oxidase confer protection from salt sensitivity on Dahl salt-sensitive rats. Here, we track the sequential changes in medullary blood flow (MBF), glomerular filtration rate (GFR), urinary protein, and mean arterial pressure in SS p67 phox null rats and wild-type littermates during 21 days of 4.0% NaCl high-salt (HS) diet. Optical fibers were implanted in the renal medulla and MBF was measured in conscious rats by laser Doppler flowmetry. Separate groups of rats were prepared with femoral venous catheters and GFR was measured by the transcutaneous assessment of fluorescein isothiocyanate-sinistrin disappearance curves. Mean arterial blood pressure was measured by telemetry. In wild-type rats, HS caused a rapid reduction in MBF, which was significantly lower than control values by HS day-6. Reduced MBF was associated with a progressive increase in mean arterial pressure, averaging 170±5 mm Hg by HS salt day-21. A significant reduction in GFR was evident on day-14 HS, after the onset of hypertension and reduced MBF. In contrast, HS had no significant effect on MBF in SS p67 phox null rats and the pressor response to sodium was blunted, averaging 150±3 mm Hg on day-21 HS. GFR was maintained throughout the study and proteinuria was reduced. In summary, when p67 phox is not functional in the salt-sensitive rats, HS does not cause reduced MBF and salt-sensitive hypertension is attenuated, and consequently renal injury is reduced and GFR is maintained.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3