Thoracic Spinal Cord Neuroinflammation as a Novel Therapeutic Target in Pulmonary Hypertension

Author:

Razee Asif1,Banerjee Somanshu1,Hong Jason2,Magaki Shino3,Fishbein Greg3ORCID,Ajijola Olujimi A.4ORCID,Umar Soban1ORCID

Affiliation:

1. Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine (A.R., S.B., S.U.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA.

2. Department of Medicine, Division of Pulmonary and Critical Care Medicine (J.H.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA.

3. Department of Pathology (S.M., G.F.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA.

4. UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence (O.A.A.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA.

Abstract

Background: Pulmonary hypertension (PH) is associated with aberrant sympathoexcitation leading to right ventricular failure (RVF), arrhythmias, and death. Microglial activation and neuroinflammation have been implicated in sympathoexcitation in experimental PH. We recently reported the first evidence of thoracic spinal cord (TSC) neuroinflammation in PH rats. Here, we hypothesize that PH is associated with increased cardiopulmonary afferent signaling leading to TSC-specific neuroinflammation and sympathoexcitation. Furthermore, inhibition of TSC neuroinflammation rescues experimental PH and RVF. Methods: We performed transcriptomic analysis and its validation on the TSC of monocrotaline (n=8) and Sugen hypoxia (n=8) rat models of severe PH-RVF. A group of monocrotaline rats received either daily intrathecal microglial activation inhibitor minocycline (200 μg/kg per day, n=5) or PBS (n=5) from day 14 through 28. Echocardiography and right ventricle-catheterization were performed terminally. Real-time quantitative reverse transcription PCR, immunolocalization, microglia+astrocyte quantification, and terminal deoxynucleotidyl transferase dUTP nick end labeling were assessed. Plasma catecholamines were measured by ELISA. Human spinal cord autopsy samples (Control n=3; pulmonary arterial hypertension n=3) were assessed to validate preclinical findings. Results: Increased cardiopulmonary afferent signaling was demonstrated in preclinical and clinical PH. Our findings delineated common dysregulated genes and pathways highlighting neuroinflammation and apoptosis in the remodeled TSC and highlighted increased sympathoexcitation in both rat models. Moreover, we validated significantly increased microglial and astrocytic activation and CX3CL1 expression in TSC of human pulmonary arterial hypertension. Finally, amelioration of TSC neuroinflammation by minocycline in monocrotaline rats inhibited microglial activation, decreased proinflammatory cytokines, sympathetic nervous system activation and significantly attenuated PH and RVF. Conclusions: Targeting neuroinflammation and associated molecular pathways and genes in the TSC may yield novel therapeutic strategies for PH and RVF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3