Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload–Induced Hypertrophy

Author:

Adapala Ravi K.1ORCID,Katari Venkatesh1ORCID,Kanugula Anantha K.2,Ohanyan Vahagn2ORCID,Paruchuri Sailaja1,Thodeti Charles K.1ORCID

Affiliation:

1. Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, OH (R.K.A., V.K., S.P., C.K.T.).

2. Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH (A.K.K., V.O.).

Abstract

BACKGROUND: Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. METHODS: We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4 ECKO ) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. RESULTS: We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4 lox/lox mice, 28 days post–transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4 ECKO hearts after transverse aortic constriction compared with TRPV4 lox/lox . Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4 ECKO hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness–dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. CONCLUSIONS: Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3