Endothelial Sphingolipid De Novo Synthesis Controls Blood Pressure by Regulating Signal Transduction and NO via Ceramide

Author:

Cantalupo Anna1,Sasset Linda1,Gargiulo Antonella12,Rubinelli Luisa1,Del Gaudio Ilaria134,Benvenuto Domenico1,Wadsack Christian34,Jiang Xiang-Chen5,Bucci Maria Rosaria2,Di Lorenzo Annarita1

Affiliation:

1. From the Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.C., L.S., A.G., L.R., I.d.G., D.B., A.D.L.)

2. Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy (A.G., M.R.B.)

3. Department of Obstetrics and Gynaecology, Medical University of Graz, Austria (I.d.G., C.W.)

4. BioTechMed-Graz, Austria (I.d.G., C.W.)

5. Department of Anatomy and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn (X.-C.J.).

Abstract

Ceramides are sphingolipids that modulate a variety of cellular processes via 2 major mechanisms: functioning as second messengers and regulating membrane biophysical properties, particularly lipid rafts, important signaling platforms. Altered sphingolipid levels have been implicated in many cardiovascular diseases, including hypertension, atherosclerosis, and diabetes mellitus–related conditions; however, molecular mechanisms by which ceramides impact endothelial functions remain poorly understood. In this regard, we generated mice defective of endothelial sphingolipid de novo biosynthesis by deleting the Sptlc2 (long chain subunit 2 of serine palmitoyltransferase)—the first enzyme of the pathway. Our study demonstrated that endothelial sphingolipid de novo production is necessary to regulate (1) signal transduction in response to NO agonists and, mainly via ceramides, (2) resting eNOS (endothelial NO synthase) phosphorylation, and (3) blood pressure homeostasis. Specifically, our findings suggest a prevailing role of C16:0-Cer in preserving vasodilation induced by tyrosine kinase and GPCRs (G-protein coupled receptors), except for Gq-coupled receptors, while C24:0- and C24:1-Cer control flow-induced vasodilation. Replenishing C16:0-Cer in vitro and in vivo reinstates endothelial cell signaling and vascular tone regulation. This study reveals an important role of locally produced ceramides, particularly C16:0-, C24:0-, and C24:1-Cer in vascular and blood pressure homeostasis, and establishes the endothelium as a key source of plasma ceramides. Clinically, specific plasma ceramides ratios are independent predictors of major cardiovascular events. Our data also suggest that plasma ceramides might be indicative of the diseased state of the endothelium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference58 articles.

1. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis

2. Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice.;Liu VW;Cardiovasc Res,2008

3. Life history of eNOS: Partners and pathways

4. Ceramide Remodeling and Risk of Cardiovascular Events and Mortality

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3