Ablation of Interferon Regulatory Factor 3 Protects Against Atherosclerosis in Apolipoprotein E–Deficient Mice

Author:

Liu Hui1,Cheng Wen-Lin1,Jiang Xi1,Wang Pi-Xiao1,Fang Chun1,Zhu Xue-Yong1,Huang Zan1,She Zhi-Gang1,Li Hongliang1

Affiliation:

1. From the Department of Cardiology, Renmin Hospital of Wuhan University, China (H. Liu, W.-L.C., X.J., P.-X.W., C.F., X.-Y.Z., Z.-G.S., H. Li); and The Institute of Model Animals (H. Liu, W.-L.C., X.J., P.-X.W., C.F., X.-Y.Z., Z.-G.S., H. Li), Medical Research Institute, School of Medicine (H. Liu, W.-L.C., X.J., P.-X.W., C.F., X.-Y.Z., Z.-G.S., H. Li), Collaborative Innovation Center of Model Animal (H. Liu, W.-L.C., X.J., P.-X.W., C.F., X.-Y.Z., Z.-G.S., H. Li), Cardiovascular Research Institute (H...

Abstract

The secretion of adhesion molecules by endothelial cells, as well as the subsequent infiltration of macrophages, determines the initiation and progression of atherosclerosis. Accumulating evidence suggests that IRF3 (interferon regulatory factor 3) is required for the induction of proinflammatory cytokines and for endothelial cell proliferation. However, the effect and underlying mechanism of IRF3 on atherogenesis remain unknown. Our results demonstrated a moderate-to-strong immunoreactivity effect associated with IRF3 in the endothelium and macrophages of the atherosclerotic plaques in patients with coronary heart disease and in hyperlipidemic mice. IRF3 / ApoE −/− mice showed significantly decreased atherosclerotic lesions in the whole aorta, aortic sinus, and brachiocephalic arteries. The bone marrow transplantation further suggested that the amelioration of atherosclerosis might be attributed to the effects of IRF3 deficiency mainly in endothelial cells, as well as in macrophages. The enhanced stability of atherosclerotic plaques in IRF3 −/− ApoE −/− mice was characterized by the reduction of necrotic core size, macrophage infiltration, and lipids, which was accompanied by increased collagen and smooth muscle cell content. Furthermore, multiple proinflammatory cytokines showed a marked decrease in IRF3 −/− ApoE −/− mice. Mechanistically, IRF3 deficiency suppresses the secretion of VCAM-1 (vascular cell adhesion molecule 1) and the expression of ICAM-1 (intercellular adhesion molecule 1) by directly binding to the ICAM-1 promoter, which subsequently attenuates macrophage infiltration. Thus, our study suggests that IRF3 might be a potential target for the treatment of atherosclerosis development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3