Acute Increase of Renal Perfusion Pressure Causes Rapid Activation of mTORC1 (Mechanistic Target Of Rapamycin Complex 1) and Leukocyte Infiltration

Author:

Shimada Satoshi1ORCID,Yang Chun1,Kumar Vikash1ORCID,Mattson David L.12,Cowley Allen W.1ORCID

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee (S.S., C.Y., V.K., D.L.M., A.W.C.).

2. Now with: Department of Physiology, Medical College of Georgia at Augusta University (D.L.M.).

Abstract

Background:The present study in Sprague-Dawley rats determined the effects of a rapid rise of renal perfusion pressure (RPP) upon the activation of mTOR (mechanistic target of rapamycin), and the effects upon the infiltration of CD68-positive macrophages/monocytes and CD3-positive T lymphocytes into the kidneys.Methods:RPP was elevated by 40 mm Hg for 30 minutes in male Sprague-Dawley rats while measuring renal blood flow and urine flow rate. Sham rats were studied in the same way, but RPP was not changed. Since initial studies found that the acute increase of RPP resulted in activation of mTORC1 (phosphorylation of S6S235/236), the effects of inhibition of mTORC1 with rapamycin pretreatment were then determined.Results:It was found that a 30-minute increase of RPP (≈40 mm Hg) resulted in an 8-fold increase of renal sodium excretion which was blunted by rapamycin treatment. Renal blood flow was not affected by the elevation of RPP. Activation of mTORC1 was observed. Significant increases in CD68-positive macrophages were found in both the cortex (intraglomerular and periglomerular regions) and in the outer medullary interstitial regions of the kidney and prevented by rapamycin treatment. Increases in CD3-positive T lymphocytes were observed exclusively in the periglomerular regions and prevented by rapamycin treatment. Upregulation of several proinflammatory markers was observed.Conclusions:We conclude that elevation of RPP rapidly activates mTORC1 resulting in infiltration of immune cells into the kidney.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3