Neuromechanical Features of the Cardiac Baroreflex After Exercise

Author:

Willie Christopher K.1,Ainslie Philip N.1,Taylor Chloe E.1,Jones Helen1,Sin Peter Y.W.1,Tzeng Yu-Chieh1

Affiliation:

1. From the Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (C.E.T., H.J.), Liverpool John Moores University, Liverpool, United Kingdom; Cardiovascular Systems Laboratory (P.Y.W.S., Y.-C.T.), Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand.

Abstract

A single bout of exercise is associated with postexercise hypotension, transient decreases in autonomic function, and changes in baroreflex sensitivity. The baroreflex is less sensitive to falling blood pressure than to rising blood pressure; we characterized the cardiac baroreflex in terms of hysteresis and its mechanical and neural components. We hypothesized that hysteresis would be exacerbated postexercise because of a greater relative decrease in falling blood pressure. In 10 healthy young humans (5 men), we used bolus injections of sodium nitroprusside and phenylephrine hydrochloride to drive transient decreases and increases in blood pressure, respectively, to quantify cardiac baroreflex sensitivity to falling and rising blood pressure. This was completed before and at 10, 30, and 60 minutes after 40 minutes of cycling at 60% estimated maximal oxygen consumption. Analyses of beat-to-beat blood pressure, R-R intervals and heart rate, and carotid artery diameter were used to determine the integrated cardiac baroreflex response; this was further quantified into a mechanical component (systolic blood pressure versus carotid diameter) and a neural component (carotid diameter versus R-R interval). There were 2 principle findings: after aerobic exercise baroreflex sensitivity is reduced and hysteresis manifests, and the reduction in sensitivity to falling blood pressure is mediated by decreased mechanical and neural gains, whereas the decreased baroreflex sensitivity to rising blood pressure is mediated by a reduced mechanical gain only. We suggest that impaired neural transduction of the cardiac baroreflex, and its influence on hysteresis, plays an important role in transient autonomic dysfunction after exercise.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference43 articles.

1. Post-exercise depression of baroreflex slowing of the heart in humans

2. The role of baroreflex sensitivity in post-exercise hypotension;Somers VK;J Hypertens,1985

3. Influences of hydration on post-exercise cardiovascular control in humans

4. Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise;Halliwill JR;Am J Physiol,1996

5. Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3