Integrin CD11b Contributes to Hypertension and Vascular Dysfunction Through Mediating Macrophage Adhesion and Migration

Author:

Lin Qiu-Yue1,Bai Jie1,Zhang Yun-Long2,Li Hui-Hua12ORCID

Affiliation:

1. Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Q.-Y.L., J.B., H.-H.L.).

2. Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (Y.-L.Z., H.-H.L.).

Abstract

Background: Leukocyte adhesion to endothelium is an early inflammatory response and is mainly controlled by the β2-integrins. However, the role of integrin CD11b/CD18 in the pathogenesis of hypertension and vascular dysfunction is unclear. Methods: Hypertension was established by angiotensin II (490 ng/kg·per min) or deoxycorticosterone acetate salt. Hypertensive responses were studied in CD11b-deficient (CD11b -/- ) mice, bone marrow transplanted and wild-type (WT) mice that were administered anti-CD11b neutralizing antibody or agonist leukadherin-1. Blood pressure was monitored with tail-cuff method and radiotelemetry. Blood and vascular inflammatory cells were assessed by flow cytometry. Aortic remodeling and function were examined using histology and aortic ring analysis. Cell adhesion and migration were evaluated in vitro. The relationship between circulating CD11b + immune cells and hypertension was analyzed in patients with hypertension. Results: We found that CD11b and CD18 expression as well as the CD45 + CD11b + CD18 + myeloid cells were highly increased in the aorta of angiotensin II-infused mice. Ablation or pharmacological inhibition of CD11b in mice significantly alleviated hypertension, aortic remodeling, superoxide generation, vascular dysfunction, and the infiltration of CD11b + macrophages through reducing macrophage adhesion and migration. These effects were confirmed in WT mice reconstituted with CD11b-deficient bone marrow cells. Conversely, angiotensin II-induced hypertensive response was exacerbated by CD11b agonist leukadherin-1. Notably, circulating CD45 + CD11b + CD18 + myeloid cells and the ligand levels in hypertensive patients were significantly higher than in normotensive controls. Conclusions: We demonstrated a critical significance of CD11b + myeloid cells in hypertension and vascular dysfunction. Targeting CD11b may represent a novel therapeutic option for hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3