Altered Vascular Resistance Properties and Acute Pressure-Natriuresis Mechanism in Neonatal and Weaning Spontaneously Hypertensive Rats

Author:

Komolova Marina1,Friberg Peter1,Adams Michael A.1

Affiliation:

1. From the Department of Biomedical and Molecular Sciences (M.K., M.A.A.), Queen's University, Kingston, Ontario, Canada; Department of Clinical Physiology (P.F.), University of Göteborg, Sahlgrenska University Hospital, Göteborg, Sweden.

Abstract

Although it has been extensively scrutinized, the factor(s) involved in the initiation and development of hypertension in spontaneously hypertensive rats (SHRs) remains unresolved. The objective of the present study was to determine whether, early in development, the causal mechanism(s) for the development of hypertension in young SHRs involves an integration of 2 processes, specifically an upregulation of structurally based vascular resistance properties and a rightward shift in the hemodynamic component of pressure-natriuresis. Mean arterial pressure was determined in conscious 4-week–old SHRs and Wistar-Kyoto rats via previously implanted aortic catheters. Structurally based hindlimb vascular resistance properties were assessed in 2- and 4-week–old SHRs and Wistar-Kyoto rats. Renal interstitial hydrostatic pressure was measured after short-term manipulations of renal arterial pressure (RAP) in 4-week–old, anesthetized rats. Although mean arterial pressure in conscious SHRs (113±5 mm Hg) and Wistar-Kyoto rats (110±6 mm Hg) was not significantly different at 4 weeks of age, SHRs at 2 and 4 weeks of age already had increases in structurally based vascular resistance properties of ≈30% above age- and weight-matched Wistar-Kyoto rats. Furthermore, the acute RAP-renal interstitial hydrostatic pressure relationship was found to be linear in both strains, and the temporal coupling of the stimulus to response was rapid; that is, renal interstitial hydrostatic pressure responses to changes in RAP were <2 s. Although the slope of the RAP-renal interstitial hydrostatic pressure relationship was not significantly different between strains, the relationship was significantly shifted (18%) to higher RAPs in SHRs. These results suggest that alterations in both vascular structure and renal function in young SHRs occur before elevations in mean arterial pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3