Trophoblast-Derived Extracellular Vesicles Promote Preeclampsia by Regulating Macrophage Polarization

Author:

Liu Xiu12,Fei Haiyi12,Yang Cuiyu12,Wang Jianmin12,Zhu Xiaohong3,Yang Anran12,Shi Zhan12,Jin Xiaoying12,Yang Fei4ORCID,Wu Dan5ORCID,Jiang Lingling1ORCID,Zhang Songying12ORCID

Affiliation:

1. Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.L., H.F., C.Y., J.W., A.Y., Z.S., X.J., L.J., S.Z.).

2. Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, China (X.L., H.F., C.Y., J.W., A.Y., Z.S., X.J., L.J., S.Z.).

3. Department of Obstetrics and Gynecology, Affiliated Xiao Shan Hospital, Hangzhou Normal University, China (X.Z.).

4. Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, China (F.Y.).

5. Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W.).

Abstract

BACKGROUND: Systemic inflammation caused by dysfunctional macrophages is a crucial pathogenetic event in preeclampsia (PE). Trophoblast-derived extracellular vesicles (T-EVs) are potent immune cell signaling modulators in pregnancy. Herein, we aimed to investigate T-EVs’ effect and mechanism on macrophage polarization and its role in PE pathogenesis, which remain unclear. METHODS: Flow cytometry and immunochemistry were used to determine placental macrophage phenotypes. T-EVs were immuno-isolated via placental alkaline phosphatase antibody and identified by transmission electron microscopy and nanoparticle tracking analysis. Quantitative real-time polymerase chain reaction and flow cytometry were used to examine the effects of T-EVs on macrophage polarization, and correlation analysis of T-EVs lipidomics and macrophages transcriptome were performed to explore how T-EVs modulate macrophages. Animal experiments were established to investigate the relationship among PE, T-EVs, and macrophages. RESULTS: Macrophages shift from the M2 to M1 phenotype in the preeclamptic placenta. Also, T-EVs from women with PE (PE-EVs) significantly upregulated M1 gene markers and significantly downregulated CD163 expression in macrophages compared with T-EVs in women with normal pregnancies (NP-EVs). Mechanistically, correlation analysis with T-EVs lipidome and the transcriptome of macrophages treated with PE-EVs or NP-EVs indicated that 37 lipids altered in PE-EVs considerably affected classical inflammatory biological pathways in macrophages. Finally, animal experiments revealed that PE-EVs triggered PE-like symptoms in pregnant mice, which were alleviated after macrophage depletion. CONCLUSIONS: T-EVs from women with PE could promote preeclampsia by inducing macrophage imbalance polarization, signifying a potential novel interventional target for the prevention and management of PE.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3