Salt-Sensitive Hypertension of the Renal Tubular Cell–Specific NFAT5 (Nuclear Factor of Activated T-Cells 5) Knockout Mice

Author:

Hiramatsu Akiko1,Izumi Yuichiro1ORCID,Eguchi Koji1,Matsuo Naomi1,Deng Qinyuan1,Inoue Hideki1,Nakayama Yushi1,Nonoguchi Hiroshi2ORCID,Aramburu Jose3ORCID,López-Rodríguez Cristina3,Kakizoe Yutaka1,Adachi Masataka1ORCID,Kuwabara Takashige1ORCID,Kim-Mitsuyama Shokei4,Mukoyama Masashi1

Affiliation:

1. Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan.

2. Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Saitama, Japan (H.N.).

3. Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.).

4. Department of Pharmacology and Molecular Therapeutics (S.K.-M.), Kumamoto University Graduate School of Medical Sciences, Japan.

Abstract

The kidney plays a crucial role in blood pressure (BP) regulation by controlling sodium reabsorption along the nephron. NFAT5 (nuclear factor of activated T-cells 5) is a transcription factor that is expressed in various tissues including the kidney and is activated at hypertonic conditions as observed in the renal medulla; the role for kidney NFAT5 in BP regulation, however, remains still obscure. In the present study, we generated inducible and renal tubular cell–specific NFAT5 knockout (KO) mice and characterized their phenotype. The NFAT5 KO mice exhibited high BP, hypernatremia, polyuria, and low urinary sodium excretion without significant alterations in the plasma renin activity or aldosterone concentration. The mice fed a high-salt diet further increased BP, revealing salt-sensitive hypertension. The KO mice exhibited the increased gene expression of the epithelial sodium channel. Protein expression of epithelial sodium channel in the membrane fraction was also significantly increased in KO mice than in wild-type mice. Treatment with amiloride, an epithelial sodium channel blocker, corrected high BP, hypernatremia, and decreased urinary sodium excretion in KO mice to the same levels of those in wild-type mice. Finally, the effects of high-salt diet and amiloride in KO mice were confirmed by the radiotelemetry method. In conclusion, these data indicate that renal tubular NFAT5 should play an important role in regulating sodium reabsorption through epithelial sodium channel under high-salt conditions, thereby preventing salt-dependent hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3