Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries

Author:

Baron-Menguy Celine1,Domenga-Denier Valérie1,Ghezali Lamia1,Faraci Frank M.1,Joutel Anne1

Affiliation:

1. From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.).

Abstract

CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation ( Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure–independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference31 articles.

1. Vascular Remodeling in Hypertension

2. The Structural Factor of Hypertension

3. Vascular remodeling.;Mulvany MJ;Hypertension,1996

4. Mechanics of large and small cerebral arteries in chronic hypertension.;Hajdu MA;Am J Physiol,1994

5. Prognostic Significance of Small-Artery Structure in Hypertension

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3