Angiotensin-Converting Enzyme 2 Posttranslational Modifications and Implications for Hypertension and SARS-CoV-2: 2023 Lewis K. Dahl Memorial Lecture

Author:

Elgazzaz Mona12ORCID,Filipeanu Catalin M.3,Lazartigues Eric45ORCID

Affiliation:

1. Department of Physiology, Augusta University, Medical College of Georgia, Augusta, GA (M.E.).

2. Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt (M.E.).

3. Department of Pharmacology, Howard University, Washington, DC (C.M.F.).

4. Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (E.L.).

5. Southeast Louisiana Veterans Health Care System, New Orleans (E.L.).

Abstract

ACE2 (angiotensin-converting enzyme 2), a multifunctional transmembrane protein, is well recognized as an important member of the (RAS) renin–angiotensin system with important roles in the regulation of cardiovascular function by opposing the harmful effects of Ang-II (angiotensin II) and AT1R (Ang-II type 1 receptor) activation. More recently, ACE2 was found to be the entry point for the SARS-CoV-2 virus into cells, causing COVID-19. This finding has led to an exponential rise in the number of publications focused on ACE2, albeit these studies often have opposite objectives to the preservation of ACE2 in cardiovascular regulation. However, notwithstanding accumulating data of the role of ACE2 in the generation of angiotensin-(1–7) and SARS-CoV-2 internalization, numerous other putative roles of this enzyme remain less investigated and not yet characterized. Currently, no drug modulating ACE2 function or expression is available in the clinic, and the development of new pharmacological tools should attempt targeting each step of the lifespan of the protein from synthesis to degradation. The present review expands on our presentation during the 2023 Lewis K. Dahl Memorial Lecture Sponsored by the American Heart Association Council on Hypertension. We provide a critical summary of the current knowledge of the mechanisms controlling ACE2 internalization and intracellular trafficking, the mutual regulation with GPCRs (G-protein–coupled receptors) and other proteins, and posttranslational modifications. A major focus is on ubiquitination which has become a critical step in the modulation of ACE2 cellular levels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3