Activation of Peroxisome Proliferator-Activated Receptor–δ Enhances Regenerative Capacity of Human Endothelial Progenitor Cells by Stimulating Biosynthesis of Tetrahydrobiopterin

Author:

He Tongrong1,Smith Leslie A.1,Lu Tong1,Joyner Michael J.1,Katusic Zvonimir S.1

Affiliation:

1. From the Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics (T.H., L.A.S., M.J.J., Z.S.K.) and Internal Medicine (T.L.), Mayo Clinic College of Medicine, Rochester, MN.

Abstract

The mechanisms underlying the regenerative capacity of endothelial progenitor cells (EPCs) are not fully understood. We hypothesized that biosynthesis of tetrahydrobiopterin is an important mechanism responsible for the stimulatory effects of peroxisome proliferator-activated receptor–δ (PPARδ) activation on regenerative function of human EPCs. Treatment of human EPCs with a selective PPARδ agonist GW501516 for 24 hours increased the levels of mRNA, protein, and enzymatic activity of GTP cyclohydrolase I (GTPCH I), as well as the production of tetrahydrobiopterin. The effects of GW501516 were mediated by suppression of PTEN expression, thereby increasing phosphorylation of AKT. The AKT signaling also mediated GW501516-induced phosphorylation of endothelial NO synthase. In addition, activation of PPARδ significantly enhanced proliferation of EPCs. This effect was abolished by the GTPCH I inhibitor, 2,4-diamino-6-hydroxypyrimidine, or genetic inactivation of GTPCH I with small interfering RNA but not by inhibition of endothelial NO synthase with N G -nitro- l -arginine methyl ester. Supplementation of NO did not reverse 2,4-diamino-6-hydroxypyrimidine-inhibited 5-bromodeoxyuridine incorporation. Furthermore, transplantation of human EPCs stimulated re-endothelialization in a mouse model of carotid artery injury. Pretreatment of EPCs with GW501516 significantly enhanced the ability of transplanted EPCs to repair denuded endothelium. GTPCH I-small interfering RNA transfection significantly inhibited in vivo regenerative capacity of EPCs stimulated with GW501516. Thus, in human EPCs, activation of PPARδ stimulates expression and activity of GTPCH I and biosynthesis of tetrahydrobiopterin via PTEN-AKT signaling pathway. This effect enhances the regenerative function of EPCs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3