Abnormal Cyclic Nucleotide Signaling at the Outer Mitochondrial Membrane In Sympathetic Neurons During the Early Stages of Hypertension

Author:

Li Dan1ORCID,Liu Kun1,Davis Harvey12,Robertson Calum1ORCID,Neely Oliver C.1,Tarafdar Adib1ORCID,Li Ni13,Lefkimmiatis Konstantinos45ORCID,Zaccolo Manuela1,Paterson David J.1ORCID

Affiliation:

1. Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom.

2. Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (H.D.).

3. Chinese Academy of Medical Sciences Oxford Institute (COI), Nuffield Department of Medicine Research Building (N.L.), University of Oxford, United Kingdom.

4. Department of Molecular Medicine, University of Pavia, Italy (K.L.).

5. Veneto Institute of Molecular Medicine, Padova, Italy (K.L.).

Abstract

Background: Disruption of cyclic nucleotide signaling in sympathetic postganglionic neurons contributes to impaired intracellular calcium handling (Ca 2+ ) and the development of dysautonomia during the early stages of hypertension, although how this occurs is poorly understood. Emerging evidence supports the uncoupling of signalosomes in distinct cellular compartments involving cyclic nucleotide–sensitive PDEs (phosphodiesterases), which may underpin the autonomic phenotype in stellate neurons. Methods: Using a combination of single-cell RNA sequencing together with Forster resonance energy transfer–based sensors to monitor cyclic adenosine 3’,5’-monophosphate, PKA (protein kinase A)-dependent phosphorylation and cGMP (cyclic guanosine 3’,5’-monophosphate), we tested the hypothesis that dysregulation occurs in a sub-family of PDEs in the cytosol and outer mitochondrial membrane of neurons from the stellate ganglion. Results: PDE2A, 6D, 7A, 9A genes were highly expressed in young Wistar neurons and also conserved in neurons from spontaneously hypertensive rats (SHRs). In stellate neurons from prehypertensive SHRs, we found the levels of cyclic adenosine 3’,5’-monophosphate and cGMP at the outer mitochondrial membrane were decreased compared with normal neurons. The reduced cyclic adenosine 3’,5’-monophosphate response was due to the hydrolytic activity of overexpressed PDE2A2 located at the mitochondria. Normal cyclic adenosine 3’,5’-monophosphate levels were re-established by inhibition of PDE2A. There was also a greater PKA-dependent phosphorylation in the cytosol and at the outer mitochondrial membrane in spontaneously hypertensive rat neurons, where this response was regulated by protein phosphatases. The cGMP response was only restored by inhibition of PDE6. Conclusions: When taken together, these results suggest that site-specific inhibition of PDE2A and PDE6D at the outer mitochondrial membrane may provide a therapeutic target to ameliorate cardiac sympathetic impairment during the onset of hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3