Affiliation:
1. From the Department of Pharmacology, University of Virginia, Charlottesville, VA.
Abstract
C1 catecholaminergic neurons and neurons of the retrotrapezoid nucleus are integrative nodes within the brain stem network regulating cardiorespiratory reflexes elicited by hypoxia and hypercapnia, stimuli that also produce arousal from sleep. In the present study, Channelrhodopsin-2 was selectively introduced into these neurons with a lentiviral vector to determine whether their selective activation also produces arousal in sleeping rats. Sleep stages were identified from electroencephalographic and neck muscle electromyographic recordings. Breathing was measured using unrestrained whole body plethysmography and blood pressure by telemetry. During nonrapid eye movement sleep, unilateral photostimulation of the C1 region caused arousal in 83.0±14.7% of trials and immediate and intense cardiorespiratory activation. Arousal during photostimulation was also observed during rapid eye movement sleep (41.9±5.6% of trials), but less reliably than during nonrapid eye movement sleep. The cardiorespiratory responses elicited by photostimulation were dramatically smaller during rapid eye movement sleep than nonrapid eye movement sleep or wakefulness. Systemic α1-adrenoreceptor blockade reduced the cardiorespiratory effects of photostimulation but had no effect on the arousal caused by photostimulation during nonrapid eye movement sleep. Postmortem histology showed that neurons expressing Channelrhodopsin 2–mCherry were predominantly catecholaminergic (81%). These results show that selective activation of C1 and retrotrapezoid nucleus neurons produces state-dependent arousal and cardiorespiratory stimulation. These neurons, which are powerfully activated by chemoreceptor stimulation, may contribute to the sleep disruption associated with obstructive sleep apnea.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献