Impaired Hedgehog-Gli1 Pathway Activity Underlies the Vascular Phenotype of Polycystic Kidney Disease

Author:

Franchi Federico1ORCID,Peterson Karen M.1ORCID,Quandt Katherine1,Domnick David1ORCID,Kline Timothy L.2,Olthoff Michaela1ORCID,Parvizi Mojtaba1,Tolosa Ezequiel J.3ORCID,Torres Vicente E.4,Harris Peter C.4,Fernandez-Zapico Martin E.3,Rodriguez-Porcel Martin G.1

Affiliation:

1. From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN.

2. Department of Radiology (T.L.K.), Mayo Clinic, Rochester, MN.

3. Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN.

4. Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN.

Abstract

Polycystic kidney disease (PKD) has been linked to abnormal structure/function of ciliary proteins, leading to renal dysfunction. Recently, attention has been focused in the significant vascular abnormalities associated with PKD, but the mechanisms underlying this phenomenon remain elusive. Here, we seek to define the molecular events regulating the angiogenic imbalance observed in PKD. Using micro computed tomography (n=7) and protein expression analysis (n=5), we assessed the vascular density and the angiogenic profile of noncystic organs in a well-established PKD rat model (Polycystic Kidney-PCK rat). Heart and lungs of PCK rats have reduced vascular density and decreased expression of angiogenic factors compared with wild type. Similarly, PCK-vascular smooth muscle cells (VSMCs; n=4) exhibited lower levels of vascular markers. Then, using small interfering RNA (n=4), we determined the role of the ciliary protein fibrocystin in wild type-VSMCs, a critical component/regulator of vascular structure and function. Reduction of fibrocystin in wild type-VSMCs (n=4) led to an abnormal angiogenic potential similar to that observed in PCK-VSMCs. Furthermore, we investigated the involvement of the hedgehog signaling, a pathway closely linked to the primary cilium and associated with vascular development, in PKD. Mechanistically, we demonstrated that impairment of the hedgehog signaling mediates, in part, this abnormal angiogenic phenotype. Lastly, overexpression of Gli1 in PCK-VSMCs (n=4) restored the expression levels of proangiogenic molecules. Our data support a critical role of fibrocystin in the abnormal vascular phenotype of PKD and indicate that a dysregulation of hedgehog may be responsible, at least in part, for these vascular deficiencies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3