Hypothalamic Oxytocin Neuron Activation Attenuates Intermittent Hypoxia-Induced Hypertension and Cardiac Dysfunction in an Animal Model of Sleep Apnea

Author:

Rodriguez Jeannette1ORCID,Escobar Joan B.2,Cheung Emily C.12ORCID,Kowalik Grant1ORCID,Russo Rebekah1ORCID,Dyavanapalli Jhansi2,Alber Bridget R.1,Harral Grey1,Gill Aman1,Melkie Makeda1,Jain Vivek3,Schunke Kathryn J.14ORCID,Mendelowitz David2,Kay Matthew W.1ORCID

Affiliation:

1. Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC.

2. Department of Pharmacology and Physiology (J.B.E., E.C.C., J.D., D.M.), The George Washington University, Washington, DC.

3. Department of Medicine (V.J.), The George Washington University, Washington, DC.

4. Department of Anatomy, Biochemistry & Physiology, University of Hawaii, Honolulu, HI (K.J.S.).

Abstract

Background: Obstructive sleep apnea is a prevalent and poorly treated cardiovascular disease that leads to hypertension and autonomic imbalance. Recent studies that restore cardiac parasympathetic tone using selective activation of hypothalamic oxytocin neurons have shown beneficial cardiovascular outcomes in animal models of cardiovascular disease. This study aimed to determine if chemogenetic activation of hypothalamic oxytocin neurons in animals with existing obstructive sleep apnea-induced hypertension would reverse or blunt the progression of autonomic and cardiovascular dysfunction. Methods: Two groups of rats were exposed to chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea, for 4 weeks to induce hypertension. During an additional 4 weeks of exposure to CIH, 1 group was treated with selective activation of hypothalamic oxytocin neurons while the other group was untreated. Results: Hypertensive animals exposed to CIH and treated with daily hypothalamic oxytocin neuron activation had lower blood pressure, faster heart rate recovery times after exercise, and improved indices of cardiac function compared with untreated hypertensive animals. Microarray analysis suggested that, compared with treated animals, untreated animals had gene expression profiles associated with cellular stress response activation, hypoxia-inducible factor stabilization, and myocardial extracellular matrix remodeling and fibrosis. Conclusions: In animals already presenting with CIH-induced hypertension, chronic activation of hypothalamic oxytocin neurons blunted the progression of hypertension and conferred cardioprotection after an additional 4 weeks of CIH exposure. These results have significant clinical translation for the treatment of cardiovascular disease in patients with obstructive sleep apnea.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3